Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Front Immunol ; 14: 1253514, 2023.
Article in English | MEDLINE | ID: mdl-37705975

ABSTRACT

Acute graft-versus-host disease (GvHD) remains the biggest clinical challenge and prognosis-determining complication after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Donor T cells are acceptedly key mediators of alloreactivity against host tissues and here especially the gut. In support of previous studies, we found that the intestinal intra-epithelial lymphocyte (IEL) compartment was dynamically regulated in the course of MHC class I full mismatch allo-HSCT. However, while intestinal epithelial cell (IEC) damage endangers the integrity of the intestinal barrier and is a core signature of intestinal GvHD, the question whether and to what degree IELs are contributing to IEC dysregulation is poorly understood. To study lymphoepithelial interaction, we employed a novel ex vivo T cell/organoid co-culture model system. Here, allogeneic intra-epithelial T cells were superior in inducing IEC death compared to syngeneic IEL and allogeneic non-IEL T cells. The ability to induce IEC death was predominately confined to TCRß+ T cells and was executed in a largely IFNγ-dependent manner. Alloreactivity required a diverse T cell receptor (TCR) repertoire since IELs genetically modified to express a TCR restricted to a single, non-endogenous antigen failed to mediate IEC pathology. Interestingly, minor histocompatibility antigen (miHA) mismatch was sufficient to elicit IEL-driven IEC damage. Finally, advanced live cell imaging analyses uncovered that alloreactive IELs patrolled smaller areas within intestinal organoids compared to syngeneic controls, indicating their unique migratory properties within allogeneic IECs. Together, we provide here experimental evidence for the utility of a co-culture system to model the cellular and molecular characteristics of the crosstalk between IELs and IEC in an allogeneic setting ex vivo. In the light of the emerging concept of dysregulated immune-epithelial homeostasis as a core aspect of intestinal GvHD, this approach represents a novel experimental system to e.g. screen therapeutic strategies for their potential to normalize T cell/IEC- interaction. Hence, analyses in pre-clinical in vivo allo-HSCT model systems may be restricted to hereby positively selected, promising approaches.


Subject(s)
Graft vs Host Disease , Organoids , Humans , Epithelial Cells , Cell Death , Receptors, Antigen, T-Cell
2.
Virchows Arch ; 483(1): 47-58, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37165134

ABSTRACT

Histomorpholgy is one of the mainstays of acute Graft-versus-host disease (GvHD) diagnosis. However, concerns about reproducibility and the most appropriate grading system question its usefulness. Our aim was to assess histomorphological parameters and previously reported grading systems for GvHD regarding reproducibility and validity. Moreover, we propose that sum scores, derived by combining separately scored morphological parameters into a total score, might provide a simplified but equally effective means to grade GvHD. A total of 123 colon biopsies were assessed across four pathologists for intestinal GvHD using a Round-Robin test and results were correlated with clinical findings. Interobserver reproducibility was high for histological parameters that were evaluated as indicators of acute GvHD. Published grading systems were moderately reproducible (ICC 0.679-0.769) while simplified sum scores, in comparison, showed better interrater reliability (ICC 0.818-0.896). All grading systems and sum scores were associated with clinical signs of GvHD and in part with therapy response and survival. However, they were not able to stratify patients according to the clinical severity of GvHD. In a hot-spot analysis 1 crypt apoptotic body (CAB) in 10 crypts was a reasonable cut-off value for minimal diagnostic criteria of GvHD. In conclusion, histology can contribute to the diagnosis of GvHD and is reproducible. Published grading systems are able to reflect clinical findings as are simplified sum scores, which showed improved reproducibility and might be easier to handle as they are based on adding up histological parameters rather than transferring histological findings into a separate grading system. Sum scores will have to be further tested in a prospective setting.


Subject(s)
Colon , Graft vs Host Disease , Humans , Reproducibility of Results , Prospective Studies , Colon/pathology , Biopsy , Graft vs Host Disease/pathology , Acute Disease
3.
Analyst ; 148(9): 1978-1990, 2023 May 02.
Article in English | MEDLINE | ID: mdl-37000525

ABSTRACT

T cells are considered to be critical drivers of intestinal inflammation in mice and people. The so called intra-epithelial lymphocyte (IEL) compartment largely consist of T cells. Interestingly, the specific regulation and contribution of IELs in the context of inflammatory bowel disease remains poorly understood, in part due to the lack of appropriate analysis tools. Powerful, label-free methods could ultimately provide access to this cell population and hence give valuable insight into IEL biology and even more to their disease-related functionalities. Raman spectroscopy has demonstrated over the last few years its potential for reliable cell characterization and differentiation, but its utility in regard to IEL exploration remains unknown. To address this question experimentally, we utilized a murine, T cell-driven experimental model system which is accepted to model human gut inflammation. Here, we repopulated the small intestinal IEL compartment (SI IELs) of Rag1-deficient mice endogenously lacking T cells by transferring naïve CD4+ T helper cells intraperitoneally. Using multivariate statistical analysis, high-throughput Raman spectroscopy managed to define a cell subpopulation ex vivo within the SI IEL pool of mice previously receiving T cells in vivo that displayed characteristic spectral features of lymphocytes. Raman data sets matched flow cytometry analyses with the latter identifying T cell receptor (TCR)αß+ CD4+ T cell population in SI IELs from T cell-transferred mice, but not from control mice, in an abundance comparable to the one detected by Raman spectroscopy. Hence, in this study, we provide experimental evidence for high-throughput Raman spectroscopy to be a novel, future tool to reliably identify and potentially further characterize the T cell pool of small intestinal IELs ex vivo.


Subject(s)
Receptors, Antigen, T-Cell, gamma-delta , Spectrum Analysis, Raman , Mice , Humans , Animals , Receptors, Antigen, T-Cell, gamma-delta/analysis , T-Lymphocytes , Intestine, Small/chemistry , Lymphocytes/chemistry , Receptors, Antigen, T-Cell, alpha-beta/analysis , Intestinal Mucosa/chemistry
4.
Inflamm Bowel Dis ; 28(11): 1637-1646, 2022 11 02.
Article in English | MEDLINE | ID: mdl-35699622

ABSTRACT

BACKGROUND: Clinical challenges in inflammatory bowel diseases require microscopic in vivo evaluation of inflammation. Here, label-free imaging holds great potential, and recently, our group demonstrated the advantage of using in vivo multiphoton endomicroscopy for longitudinal animal studies. This article extends our previous work by in-depth analysis of label-free tissue features in common colitis models quantified by the multiphoton colitis score (MCS). METHODS: Fresh mucosal tissues were evaluated from acute and chronic dextran sulfate sodium (DSS), TNBS, oxazolone, and transfer colitis. Label-free imaging was performed by using second harmonic generation and natural autofluorescence. Morphological changes in mucosal crypts, collagen fibers, and cellularity in the stroma were analyzed and graded. RESULTS: Our approach discriminated between healthy (mean MCS = 2.5) and inflamed tissue (mean MCS > 5) in all models, and the MCS was validated by hematoxylin and eosin scoring of the same samples (85.2% agreement). Moreover, specific characteristics of each phenotype were identified. While TNBS, oxazolone, and transfer colitis showed high cellularity in stroma, epithelial damage seemed specific for chronic, acute DSS and transfer colitis. Crypt deformations were mostly observed in acute DSS. CONCLUSIONS: Quantification of label-free imaging is promising for in vivo endoscopy. In the future, this could be valuable for monitoring of inflammatory pathways in murine models, which is highly relevant for the development of new inflammatory bowel disease therapeutics.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Mice , Animals , Dextran Sulfate , Oxazolone , Disease Models, Animal , Inflammation
5.
Front Immunol ; 13: 1040775, 2022.
Article in English | MEDLINE | ID: mdl-36741412

ABSTRACT

Introduction: Macrophages play an important role in intestinal wound healing. However, the trajectories from circulating monocytes to gut macrophages are incompletely understood. Methods: Taking advantage of mice depleted for non-classical monocytes due to deficiency for the transcription factor Nr4a1, we addressed the relevance of non-classical monocytes for large intestinal wound healing using flow cytometry, in vivo wound healing assays and immunofluorescence. Results: We show that wound healing in Nr4a1-deficient mice is substantially delayed and associated with reduced peri-lesional presence of macrophages with a wound healing phenotype. Discussion: Our data suggest that non-classical monocytes are biased towards wound healing macrophages. These insights might help to understand, how targeting monocyte recruitment to the intestine can be used to modulate intestinal macrophage functions.


Subject(s)
Macrophages , Monocytes , Mice , Animals , Wound Healing , Intestine, Large , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
6.
Int J Mol Sci ; 22(10)2021 May 13.
Article in English | MEDLINE | ID: mdl-34067987

ABSTRACT

Intraepithelial lymphocytes (IEL) are widely distributed within the small intestinal epithelial cell (IEC) layer and represent one of the largest T cell pools of the body. While implicated in the pathogenesis of intestinal inflammation, detailed insight especially into the cellular cross-talk between IELs and IECs is largely missing in part due to lacking methodologies to monitor this interaction. To overcome this shortcoming, we employed and validated a murine IEL-IEC (organoids) ex vivo co-culture model system. Using livecell imaging we established a protocol to visualize and quantify the spatio-temporal migratory behavior of IELs within organoids over time. Applying this methodology, we found that IELs lacking CD103 (i.e., integrin alpha E, ITGAE) surface expression usually functioning as a retention receptor for IELs through binding to E-cadherin (CD324) expressing IECs displayed aberrant mobility and migration patterns. Specifically, CD103 deficiency affected the ability of IELs to migrate and reduced their speed during crawling within organoids. In summary, we report a new technology to monitor and quantitatively assess especially migratory characteristics of IELs communicating with IEC ex vivo. This approach is hence readily applicable to study the effects of targeted therapeutic interventions on IEL-IEC cross-talk.


Subject(s)
Antigens, CD/metabolism , Cell Movement , Image Processing, Computer-Assisted/methods , Integrin alpha Chains/metabolism , Intestinal Mucosa/metabolism , Intraepithelial Lymphocytes/metabolism , Organoids/metabolism , T-Lymphocytes/physiology , Animals , Coculture Techniques , Fluorescent Antibody Technique , Intestinal Mucosa/cytology , Intraepithelial Lymphocytes/cytology , Mice , Organoids/cytology , Spatio-Temporal Analysis
7.
Nat Commun ; 12(1): 1112, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33602937

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a worldwide health threat. In a prospective multicentric study, we identify IL-3 as an independent prognostic marker for the outcome during SARS-CoV-2 infections. Specifically, low plasma IL-3 levels is associated with increased severity, viral load, and mortality during SARS-CoV-2 infections. Patients with severe COVID-19 exhibit also reduced circulating plasmacytoid dendritic cells (pDCs) and low plasma IFNα and IFNλ levels when compared to non-severe COVID-19 patients. In a mouse model of pulmonary HSV-1 infection, treatment with recombinant IL-3 reduces viral load and mortality. Mechanistically, IL-3 increases innate antiviral immunity by promoting the recruitment of circulating pDCs into the airways by stimulating CXCL12 secretion from pulmonary CD123+ epithelial cells, both, in mice and in COVID-19 negative patients exhibiting pulmonary diseases. This study identifies IL-3 as a predictive disease marker for SARS-CoV-2 infections and as a potential therapeutic target for pulmunory viral infections.


Subject(s)
COVID-19/diagnosis , Interleukin-3/blood , Animals , COVID-19/mortality , Chemokine CXCL12/immunology , Dendritic Cells/cytology , Disease Models, Animal , Female , Germany , Humans , Immunity, Innate , Interferons/blood , Lung/immunology , Lung/virology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Prospective Studies , Severity of Illness Index , T-Lymphocytes/cytology , Viral Load
10.
Front Immunol ; 11: 691, 2020.
Article in English | MEDLINE | ID: mdl-32457736

ABSTRACT

Cystic fibrosis patients suffer from a progressive, often fatal lung disease, which is based on a complex interplay between chronic infections, locally accumulating immune cells and pulmonary tissue remodeling. Although group-2 innate lymphoid cells (ILC2s) act as crucial initiators of lung inflammation, our understanding of their involvement in the pathogenesis of cystic fibrosis remains incomplete. Here we report a marked decrease of circulating CCR6+ ILC2s in the blood of cystic fibrosis patients, which significantly correlated with high disease severity and advanced pulmonary failure, strongly implicating increased ILC2 homing from the peripheral blood to the chronically inflamed lung tissue in cystic fibrosis patients. On a functional level, the CCR6 ligand CCL20 was identified as potent promoter of lung-directed ILC2 migration upon inflammatory conditions in vitro and in vivo using a new humanized mouse model with light-sheet fluorescence microscopic visualization of lung-accumulated human ILC2s. In the lung, blood-derived human ILC2s were able to augment local eosinophil and neutrophil accumulation and induced a marked upregulation of pulmonary type-VI collagen expression. Studies in primary human lung fibroblasts additionally revealed ILC2-derived IL-4 and IL-13 as important mediators of this type-VI collagen-inducing effect. Taken together, the here acquired results suggest that pathologically increased CCL20 levels in cystic fibrosis airways induce CCR6-mediated lung homing of circulating human ILC2s. Subsequent ILC2 activation then triggers local production of type-VI collagen and might thereby drive extracellular matrix remodeling potentially influencing pulmonary tissue destruction in cystic fibrosis patients. Thus, modulating the lung homing capacity of circulating ILC2s and their local effector functions opens new therapeutic avenues for cystic fibrosis treatment.


Subject(s)
Cystic Fibrosis/blood , Immunity, Innate , Lung/immunology , Lymphocyte Activation , Lymphocytes/immunology , Receptors, CCR6/metabolism , Respiratory Insufficiency/immunology , Adolescent , Adult , Aged , Animals , Arthritis, Rheumatoid/blood , Cell Movement/immunology , Chemokine CCL20/metabolism , Disease Models, Animal , Female , Humans , Inflammatory Bowel Diseases/blood , Male , Mice , Mice, Inbred C57BL , Middle Aged , Young Adult
11.
Front Immunol ; 11: 590893, 2020.
Article in English | MEDLINE | ID: mdl-33584655

ABSTRACT

Inflammatory bowel diseases (IBDs) are characterized by chronic, inflammatory gastrointestinal lesions and often require life-long treatment with immunosuppressants and repetitive surgical interventions. Despite progress in respect to the characterization of molecular mechanisms e.g. exerted by TNF-alpha, currently clinically approved therapeutics fail to provide long-term disease control for most patients. The transcription factor interferon regulatory factor 4 (IRF4) has been shown to play important developmental as well as functional roles within multiple immune cells. In the context of colitis, a T cell-intrinsic role of IRF4 in driving immune-mediated gut pathology is established. Here, we conversely addressed the impact of IRF4 inactivation in non-T cells on T cell driven colitis in vivo. Employing the CD4+CD25- naïve T cell transfer model, we found that T cells fail to elicit colitis in IRF4-deficient compared to IRF4-proficient Rag1-/- mice. Reduced colitis activity in the absence of IRF4 was accompanied by hampered T cell expansion both within the mesenteric lymph node (MLN) and colonic lamina propria (cLP). Furthermore, the influx of various myeloids, presumably inflammation-promoting cells was abrogated overall leading to a less disrupted intestinal barrier. Mechanistically, gene profiling experiments revealed a Th17 response dominated molecular expression signature in colon tissues of IRF4-proficient, colitic Rag1-/- but not in colitis-protected Rag1-/-Irf4-/- mice. Colitis mitigation in Rag1-/-Irf4-/- T cell recipients resulted in reduced frequencies and absolute numbers of IL-17a-producing T cell subsets in MLN and cLP possibly due to a regulation of conventional dendritic cell subset 2 (cDC2) known to impact Th17 differentiation. Together, extending the T cell-intrinsic role for IRF4 in the context of Th17 cell driven colitis, the provided data demonstrate a Th17-inducing and thereby colitis-promoting role of IRF4 through a T cell-extrinsic mechanism highlighting IRF4 as a putative molecular master switch among transcriptional regulators driving immune-mediated intestinal inflammation through both T cell-intrinsic and T cell-extrinsic mechanisms. Future studies need to further dissect IRF4 controlled pathways within distinct IRF4-expressing myeloid cell types, especially cDC2s, to elucidate the precise mechanisms accounting for hampered Th17 formation and, according to our data, the predominant mechanism of colitis protection in Rag1-/-Irf4-/- T cell receiving mice.


Subject(s)
Colitis/immunology , Homeodomain Proteins/immunology , Interferon Regulatory Factors/immunology , T-Lymphocytes/immunology , T-Lymphocytes/transplantation , Animals , Colitis/pathology , Colon/pathology , Homeodomain Proteins/genetics , Interferon Regulatory Factors/genetics , Mice, Inbred C57BL , Mice, Transgenic
12.
Immunology ; 159(2): 193-204, 2020 02.
Article in English | MEDLINE | ID: mdl-31631339

ABSTRACT

Excessive inflammatory immune responses during infections with Plasmodium parasites are responsible for severe complications such as cerebral malaria (CM) that can be studied experimentally in mice. Dendritic cells (DCs) activate cytotoxic CD8+ T-cells and initiate immune responses against the parasites. Batf3-/- mice lack a DC subset, which efficiently induces strong CD8 T-cell responses by cross-presentation of exogenous antigens. Here we show that Batf3-/- mice infected with Plasmodium berghei ANKA (PbA) were protected from experimental CM (ECM), characterized by a stable blood-brain barrier (BBB) and significantly less infiltrated peripheral immune cells in the brain. Importantly, the absence of ECM in Batf3-/- mice correlated with attenuated responses of cytotoxic T-cells, as their parasite-specific lytic activity as well as the production of interferon gamma and granzyme B were significantly decreased. Remarkably, spleens of ECM-protected Batf3-/- mice had elevated levels of regulatory immune cells and interleukin 10. Thus, protection from ECM in PbA-infected Batf3-/- mice was associated with the absence of strong CD8+ T-cell activity and induction of immunoregulatory mediators and cells.


Subject(s)
Basic-Leucine Zipper Transcription Factors/deficiency , Brain/immunology , Dendritic Cells/immunology , Malaria, Cerebral/prevention & control , Plasmodium berghei/pathogenicity , Repressor Proteins/deficiency , T-Lymphocytes, Cytotoxic/immunology , Animals , Basic-Leucine Zipper Transcription Factors/genetics , Blood-Brain Barrier/immunology , Blood-Brain Barrier/parasitology , Brain/metabolism , Brain/parasitology , Cells, Cultured , Dendritic Cells/metabolism , Dendritic Cells/parasitology , Disease Models, Animal , Female , Granzymes/immunology , Granzymes/metabolism , Host-Parasite Interactions , Interferon-gamma/immunology , Interferon-gamma/metabolism , Interleukin-10/immunology , Interleukin-10/metabolism , Malaria, Cerebral/immunology , Malaria, Cerebral/metabolism , Malaria, Cerebral/parasitology , Mice, Inbred C57BL , Mice, Knockout , Plasmodium berghei/immunology , Repressor Proteins/genetics , Spleen/immunology , Spleen/metabolism , Spleen/parasitology , T-Lymphocytes, Cytotoxic/metabolism , T-Lymphocytes, Cytotoxic/parasitology
13.
Semin Immunopathol ; 41(6): 655-664, 2019 11.
Article in English | MEDLINE | ID: mdl-31673757

ABSTRACT

Allogeneic transplantation of hematopoietic stem cells (allo-HCT) represents an increasingly employed therapeutic approach to potentially cure patients suffering from life-threatening malignant and autoimmune disorders. Despite its lifesaving potential, immune-mediated allo-reactivity inherent to the allogeneic transplantation can be observed within up to 50% of all allo-HCT patients regularly resulting in the manifestation of acute and/or chronic graft-versus-host disease (GvHD). Mechanistically, especially donor T cells are assumed to chiefly drive inflammation that can occur in virtually all organs, with the skin, liver, and gut representing as the most frequently affected anatomic sites. Especially in the presence of intestinal manifestations of GvHD, the risk that the disease takes a life-threatening, potentially fatal course is significantly increased. In the light of a rapid gain of knowledge in respect to decode innate and adaptive immunity related mechanisms as, e.g., cytokine networks, intracellular signaling pathways or environmental triggers as, e.g., the intestinal microbiota and the development of novel therapeutic approaches, detailed insight into endogenous mechanisms seeking to counterbalance the proinflammatory machinery or to proactively foster signals promoting the resolution of allo-driven intestinal inflammation is emerging. Here, we seek to highlight the key aspects of those mechanisms involved in and contributing to the resolution of GvHD-associated intestinal inflammation. Concomitantly, we would like to briefly outline and discuss promising future experimental targets suitable to be therapeutically employed to directionally deflect the tissue response from a proinflammatory to an inflammation-resolving type of intestinal GvHD after allo-HCT.


Subject(s)
Graft vs Host Disease/etiology , Intestinal Diseases/etiology , Acute Disease , Animals , Disease Management , Disease Susceptibility , Graft vs Host Disease/diagnosis , Graft vs Host Disease/epidemiology , Graft vs Host Disease/therapy , Hematopoietic Stem Cell Transplantation/adverse effects , Homeostasis , Humans , Intestinal Diseases/diagnosis , Intestinal Diseases/epidemiology , Intestinal Diseases/therapy
14.
Front Immunol ; 10: 883, 2019.
Article in English | MEDLINE | ID: mdl-31105702

ABSTRACT

The recently discovered population of TCRαß+ CD4-/CD8- (double-negative, DN) T-cells are highly potent suppressor cells in mice and humans. In preclinical transplantation models, adoptive transfer of DN T-cells specifically inhibits alloreactive T-cells and prevents transplant rejection or graft-vs.-host disease (GvHD). Interestingly, clinical studies in patients who underwent allogeneic stem cell transplantation reveal an inverse correlation between the frequency of circulating DN T-cells and the severity of GvHD, suggesting a therapeutic potential of human DN T-cells. However, their exact mode of action has not been elucidated yet. Investigating the impact of DN T-cells on conventional T-cells, we found that human DN T-cells selectively inhibit mTOR signaling in CD4 T-cells. Given that mTOR is a critical regulator of cellular metabolism, we further determined the impact of DN T-cells on the metabolic framework of T-cells. Intriguingly, DN T-cells diminished expression of glucose transporters and glucose uptake, whereas fatty acid uptake was not modified, indicating that DN T-cells prevent metabolic adaptation of CD4 T-cells upon activation (i.e., glycolytic switch) thereby contributing to their suppression. Further analyses demonstrated that CD4 T-cells also do not upregulate homing receptors associated with inflammatory processes. In contrast, expression of central memory-cell associated cell surface markers and transcription factors were increased by DN T-cells. Moreover, CD4 T-cells failed to produce inflammatory cytokines after co-culture with DN T-cells, whereas IL-2 secretion was enhanced. Taken together DN T-cells impair metabolic reprogramming of conventional CD4 T-cells by abrogating mTOR signaling, thereby modulating CD4 T-cell functionality. These results uncover a new mechanism of DN T-cell-mediated suppression, pointing out that DN T-cells could serve as cell-based therapy to limit alloreactive immune response.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Graft vs Host Disease/prevention & control , Immune Tolerance/immunology , T-Lymphocytes, Regulatory/immunology , TOR Serine-Threonine Kinases/metabolism , CD4 Antigens/genetics , CD8 Antigens/genetics , Cell Movement/immunology , Cells, Cultured , Coculture Techniques , Hematopoietic Stem Cell Transplantation , Humans , Lymphocyte Activation/immunology , Receptors, Antigen, T-Cell, alpha-beta/immunology , Signal Transduction/immunology
15.
JCI Insight ; 52019 04 11.
Article in English | MEDLINE | ID: mdl-30973829

ABSTRACT

Extracellular mRNAs (ex-mRNAs) potentially supersede extracellular miRNAs (ex-miRNAs) and other RNA classes as biomarkers. We performed conventional small-RNA-sequencing (sRNA-seq) and sRNA-seq with T4 polynucleotide kinase (PNK) end-treatment of total exRNA isolated from serum and platelet-poor EDTA, ACD, and heparin plasma to study the effect on ex-mRNA capture. Compared to conventional sRNA-seq PNK-treatment increased the detection of informative ex-mRNAs reads up to 50-fold. The exRNA pool was dominated by hematopoietic cells and platelets, with additional contribution from the liver. About 60% of the 15- to 42-nt reads originated from the coding sequences, in a pattern reminiscent of ribosome-profiling. Blood sample type had a considerable influence on the exRNA profile. On average approximately 350 to 1,100 distinct ex-mRNA transcripts were detected depending on plasma type. In serum, additional transcripts from neutrophils and hematopoietic cells increased this number to near 2,300. EDTA and ACD plasma showed a destabilizing effect on ex mRNA and non-coding RNA ribonucleoprotein complexes compared to other plasma types. In a proof-of-concept study, we investigated differences between the exRNA profiles of patients with acute coronary syndrome (ACS) and healthy controls. The improved tissue resolution of ex mRNAs after PNK-treatment enabled us to detect a neutrophil-signature in ACS that escaped detection by ex miRNA analysis.


Subject(s)
Acute Coronary Syndrome/genetics , Blood Cells/metabolism , Cell-Free Nucleic Acids/genetics , Liver/metabolism , Muscle, Skeletal/metabolism , RNA-Seq/methods , Acute Coronary Syndrome/blood , Adult , Aged , Biomarkers/blood , Case-Control Studies , Cell-Free Nucleic Acids/blood , Citric Acid , Edetic Acid , Erythrocytes/metabolism , Female , Glucose/analogs & derivatives , Heparin , High-Throughput Nucleotide Sequencing , Humans , Leukocytes, Mononuclear/metabolism , Male , Middle Aged , Monocytes/metabolism , Neutrophils/metabolism , Plasma , Polynucleotide 5'-Hydroxyl-Kinase , Proof of Concept Study , Sequence Analysis, RNA/methods , Serum , Specimen Handling
16.
Nat Immunol ; 20(4): 514, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30846879

ABSTRACT

In the version of this article initially published, a portion of the Acknowledgements section ("the Clinical Research Group CEDER of the German Research Council (DFG)") was incorrect. The correct statement is as follows: "...the Collaborative Research Center TRR241 of the German Research Council (DFG)...". The error has been corrected in the HTML and PDF version of the article.

17.
J Vis Exp ; (144)2019 02 11.
Article in English | MEDLINE | ID: mdl-30799849

ABSTRACT

Acute graft-versus-host disease (GvHD) represents the most severe complication that patients previously undergoing allogeneic hematopoietic stem cell transplantation (allo-HCT) face and is frequently associated with a poor clinical outcome. While, for instance, GvHD manifestations of the skin are usually responsive to established immune-suppressive therapies and are, hence, not taking a fatal course, the presence and the intensity of intestinal GvHD, especially of the mid-to-lower parts of the gut, strongly influence the outcome and overall survival of patients with acute GvHD. Therapeutic options are essentially limited to the classic immune-suppressive agents yielding only moderate disease-mitigating effects. Hence, detailed knowledge about the tissue-resident immune cascade, changes in the intestinal microbiota, and the stromal response prior, upon, and after intestinal GvHD onset are urgently needed to understand the events and mechanisms underlying its pathogenesis and to develop innovative therapeutic options. Murine models of GvHD are frequently employed to identify and functionally assess molecules and pathways putatively driving intestinal GvHD. However, means to specifically monitor and evaluate intestinal inflammation over time are essentially lacking since established scores to assess and grade acute GvHD are routinely comprised of various parameters which rather reflect systemic GvHD manifestations. The detailed evaluation of intestinal GvHD has been restricted to studies using euthanized mice, thereby essentially excluding longitudinal (i.e., kinetic) analyses of the colonic compartment under a given experimental condition (e.g., antibody-mediated blockade of a proinflammatory cytokine) in live mice (i.e., in vivo). The mini-endoscopic in situ assessment of the distal colon of allo-HCT-treated mice described here allows a) a detailed macroscopic evaluation of different aspects of intestinal inflammation and b) the option to collect tissue samples for downstream analyses at various time points over the course of the observation period. Overall, the mini-endoscopic approach provides a major advance in preclinical noninvasive monitoring and assessment of intestinal GvHD.


Subject(s)
Endoscopy/methods , Graft vs Host Disease/immunology , Hematopoietic Stem Cell Transplantation/adverse effects , Intestines/pathology , Transplantation, Homologous/adverse effects , Animals , Endoscopy/legislation & jurisprudence , Male , Mice
18.
Nat Immunol ; 20(3): 288-300, 2019 03.
Article in English | MEDLINE | ID: mdl-30692620

ABSTRACT

Although tissue-resident memory T cells (TRM cells) have been shown to regulate host protection in infectious disorders, their function in inflammatory bowel disease (IBD) remains to be investigated. Here we characterized TRM cells in human IBD and in experimental models of intestinal inflammation. Pro-inflammatory TRM cells accumulated in the mucosa of patients with IBD, and the presence of CD4+CD69+CD103+ TRM cells was predictive of the development of flares. In vivo, functional impairment of TRM cells in mice with double knockout of the TRM-cell-associated transcription factors Hobit and Blimp-1 attenuated disease in several models of colitis, due to impaired cross-talk between the adaptive and innate immune system. Finally, depletion of TRM cells led to a suppression of colitis activity. Together, our data demonstrate a central role for TRM cells in the pathogenesis of chronic intestinal inflammation and suggest that these cells could be targets for future therapeutic approaches in IBD.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Colitis/immunology , Immunologic Memory/immunology , Positive Regulatory Domain I-Binding Factor 1/immunology , Transcription Factors/immunology , Animals , CD8-Positive T-Lymphocytes/metabolism , Cells, Cultured , Chronic Disease , Colitis/genetics , Colitis/metabolism , Cytokines/genetics , Cytokines/immunology , Cytokines/metabolism , Disease Models, Animal , Gene Expression Profiling , Humans , Immunologic Memory/genetics , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/metabolism , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Positive Regulatory Domain I-Binding Factor 1/deficiency , Positive Regulatory Domain I-Binding Factor 1/genetics , Transcription Factors/deficiency , Transcription Factors/genetics
19.
Gut ; 68(5): 814-828, 2019 05.
Article in English | MEDLINE | ID: mdl-29848778

ABSTRACT

OBJECTIVE: Anti-tumour necrosis factor (TNF) antibodies are successfully used for treatment of Crohn's disease. Nevertheless, approximately 40% of patients display failure to anti-TNF therapy. Here, we characterised molecular mechanisms that are associated with endoscopic resistance to anti-TNF therapy. DESIGN: Mucosal and blood cells were isolated from patients with Crohn's disease prior and during anti-TNF therapy. Cytokine profiles, cell surface markers, signalling proteins and cell apoptosis were assessed by microarray, immunohistochemistry, qPCR, ELISA, whole organ cultures and FACS. RESULTS: Responders to anti-TNF therapy displayed a significantly higher expression of TNF receptor 2 (TNFR2) but not IL23R on T cells than non-responders prior to anti-TNF therapy. During anti-TNF therapy, there was a significant upregulation of mucosal IL-23p19, IL23R and IL-17A in anti-TNF non-responders but not in responders. Apoptosis-resistant TNFR2+IL23R+ T cells were significantly expanded in anti-TNF non-responders compared with responders, expressed the gut tropic integrins α4ß7, and exhibited increased expression of IFN-γ, T-bet, IL-17A and RORγt compared with TNFR2+IL23R- cells, indicating a mixed Th1/Th17-like phenotype. Intestinal TNFR2+IL23R+ T cells were activated by IL-23 derived from CD14+ macrophages, which were significantly more present in non-responders prior to anti-TNF treatment. Administration of IL-23 to anti-TNF-treated mucosal organ cultures led to the expansion of CD4+IL23R+TNFR2+ lymphocytes. Functional studies demonstrated that anti-TNF-induced apoptosis in mucosal T cells is abrogated by IL-23. CONCLUSIONS: Expansion of apoptosis-resistant intestinal TNFR2+IL23R+ T cells is associated with resistance to anti-TNF therapy in Crohn's disease. These findings identify IL-23 as a suitable molecular target in patients with Crohn's disease refractory to anti-TNF therapy.


Subject(s)
Crohn Disease/metabolism , Drug Resistance , Gastrointestinal Agents/therapeutic use , Receptors, Interleukin/metabolism , Receptors, Tumor Necrosis Factor, Type II/metabolism , T-Lymphocytes/physiology , Adalimumab/therapeutic use , Adolescent , Adult , Aged , Aged, 80 and over , Crohn Disease/drug therapy , Crohn Disease/pathology , Humans , Infliximab/therapeutic use , Interleukin-17/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Male , Middle Aged , Young Adult
20.
PLoS One ; 13(10): e0206576, 2018.
Article in English | MEDLINE | ID: mdl-30365545

ABSTRACT

Magnetic resonance imaging (MRI) allows non-invasive evaluation of inflammatory bowel disease (IBD) by assessing pathologically altered gut. Besides morphological changes, relaxation times and diffusion capacity of involved bowel segments can be obtained by MRI. The aim of this study was to assess the use of multiparametric MRI in the diagnosis of experimentally induced colitis in mice, and evaluate the diagnostic benefit of parameter combinations using machine learning. This study relied on colitis induction by Dextran Sodium Sulfate (DSS) and investigated the colon of mice in vivo as well as ex vivo. Receiver Operating Characteristics were used to calculate sensitivity, specificity, positive- and negative-predictive values (PPV and NPV) of these single values in detecting DSS-treatment as a reference condition. A Model Averaged Neural Network (avNNet) was trained on the multiparametric combination of the measured values, and its predictive capacity was compared to those of the single parameters using exact binomial tests. Within the in vivo subgroup (n = 19), the avNNet featured a sensitivity of 91.3% (95% CI: 86.6-96.0%), specificity of 92.3% (95% CI: 85.1-99.6%), PPV of 96.9% (94.0-99.9%) and NPV of 80.0% (95% CI: 69.9-90.1%), significantly outperforming all single parameters in at least 2 accuracy measures (p < 0.003) and performing significantly worse compared to none of the single values. Within the ex vivo subgroup (n = 30), the avNNet featured a sensitivity of 87.4% (95% CI: 82.6-92.2%), specificity of 82.9% (95% CI: 76.1-89.7%), PPV of 88.9% (84.3-93.5%) and NPV of 80.8% (95% CI: 73.8-87.9%), significantly outperforming all single parameters in at least 2 accuracy measures (p < 0.015), exceeded by none of the single parameters. In experimental mouse colitis, multiparametric MRI and the combination of several single measured values to an avNNet can significantly increase diagnostic accuracy compared to the single parameters alone. This pilot study will provide new avenues for the development of an MR-derived colitis score for optimized diagnosis and surveillance of inflammatory bowel disease.


Subject(s)
Colitis/pathology , Algorithms , Animals , Colitis/chemically induced , Colon/pathology , Dextran Sulfate/pharmacology , Female , Inflammatory Bowel Diseases/chemically induced , Inflammatory Bowel Diseases/pathology , Machine Learning , Magnetic Resonance Imaging/methods , Male , Mice , Pilot Projects , ROC Curve , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...